Nonlinear evolution of the plasma beat wave: Compressing the laser beat notes via electromagnetic cascading.

نویسندگان

  • Serguei Kalmykov
  • Gennady Shvets
چکیده

The near-resonant beat wave excitation of an electron plasma wave (EPW) can be employed for generating the trains of few-femtosecond electromagnetic (EM) pulses in rarefied plasmas. The EPW produces a comoving index grating that induces a laser phase modulation at the difference frequency. As a result, the cascade of sidebands red and blue shifted by integer multiples of the beat frequency is generated in the laser spectrum. The bandwidth of the phase-modulated laser is proportional to the product of the plasma length, laser wavelength, and amplitude of the electron density perturbation. When the beat frequency is lower than the electron plasma frequency, the redshifted spectral components are advanced in time with respect to the blueshifted ones near the center of each laser beat note. The group velocity dispersion of plasma compresses so chirped beat notes to a few-laser-cycle duration thus creating a train of sharp EM spikes with the beat periodicity. Depending on the plasma and laser parameters, chirping and compression can be implemented either concurrently in the same, or sequentially in different plasmas. Evolution of the laser beat wave and electron density perturbations is described in time and one spatial dimension in a weakly relativistic approximation. Using the compression effect, we demonstrate that the relativistic bistability regime of the EPW excitation [G. Shvets, Phys. Rev. Lett. 93, 195004 (2004)] can be achieved with the initially subthreshold beat wave pulse.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compression of laser radiation in plasmas using electromagnetic cascading.

Compressing high-power laser beams in plasmas via generation of a coherent cascade of electromagnetic sidebands is described. The technique requires two copropagating beams detuned by a near-resonant frequency Omega approximately < omega(p). The ponderomotive force of the laser beat wave drives an electron plasma wave which modifies the refractive index of plasma so as to produce a periodic pha...

متن کامل

Beat-wave excitation of plasma waves based on relativistic bistability.

A nonlinear beat-wave regime of plasma wave excitation is considered. Two beat-wave drivers are considered: intensity-modulated laser pulse and density-modulated (microbunched) electron beam. It is shown that a long beat-wave pulse can excite strong plasma waves in its wake even when the beat-wave frequency is detuned from the electron plasma frequency. The wake is caused by the dynamic bistabi...

متن کامل

شبیه‌سازی ذره‌ای شتاب دادن الکترون‌ها در پلاسمای کم چگال

One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield) and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of t...

متن کامل

The Plasma Beat Wave Accelerator - I Experiments

In the Plasma Beat Wave Accelerator, acceleration is achieved by a longitudinal electrostatic field produced as a result of charge separation generated by a plasma wave traveling close to the speed of light. The plasma wave in turn is produced by two colinear laser pulses whose amplitude is modulated so that the beat frequency matches the plasma frequency. Optical mixing and Raman forward scatt...

متن کامل

Plasma-wave generation in the beat-wave accelerator.

We analytically study the generation of longitudinal plasma waves in an underdense plasma by two electromagnetic waves with frequency difference approximately equal to the plasma frequency, as envisioned in the plasma beat-wave accelerator concept of Tajima and Dawson. The relativistic electron fluid equations describing driven electron oscillations with phase velocities near the speed of light...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 73 4 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2006